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AN EXPERIMENTAL INVESTIGATION OF TRANSONIC FLOW PAST
TYVO-DIMENSIOBL4L WEDGE AND CIRCULAR-ARC SECTIONS

USING A MACH-ZEHNDER INTERFEROMETER 1

By .lRTHC-B EAEL BRYSON, Jr.
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SUMMARY

Intei$erometer mea.wrements are giren of the jlow jield8 near
two-dimensional wedge and circu[arurc ~ections at zero angle
of attack at high-wkn{c and low+upersonic relo~”ties. Both
wdwnic jlmc un”thlocal supersonic zone and 8uper.~onic jlow
with detach~d dwck wace hare been in redigated. Pre*8ure
dtih”butions and drag coe&ients as function~ of 3fach number
hare been obtained. lle wedge data are compared with the
thavetid uwrk on flow past wedge sections qf Quder[ey and
I“oshihura, I“incenti and V“agoner, and Cole.

It h shown that the local Mach number ai any point on the
surface of a jinite three-dim en~”onai body or an unswept two-
dimenm”onal body, nwm”ng through an injinite j?uid, ha8 a
titationary rake at .JIach number i and, in-fact, remain~ nearly
cmwtant for a range of 8peed8 beiow and abore Yach number 1.
On the bad qf thk concept and the expen”menta[ data, pre8wme
di#tribution8 and drag coefficients for the wedge and circular-arc
sections are pre.qtd throughout the entire transonic range of
rfiocitie8.

INTRODUCTION

DIFFTCtlLTIES OF THEORY AN) EXPERIMENTINTHETFZA?WO!ilCEA31GE
OFVELOCITIES

The difficulties inherent in studying transonic flow are
weMnow. TlworeticaI mudysis is made dit%cult by the
nonlinearity of the dif&entiaI equations of compresaibIe
fluid motion. This nonlinearity leads to a change-over in
type of the difWentiaI equations from eIIiptic to hyper-
bolic when transition is made from subsonic to supersonic
speeds. Since the essential feature of t.ransonicflow is this
mi~ed subsonic-supersonic character, it is ob~ious that no
linearization of the differential equations (at. least in the
physical plane) can adequately dwcribe the flow.

Wiid-tunneI studies in the transonic range are made
difficult. by the huge Iateral extent of the perturbation flow
field around bodies in this range. This means that models
which are smalI compared with the test section must be
used. Even then there is stiII a range of speeds from just
beIovi Mm= 1 to just. above M== 1 where the model trod/or
its support configuration are “choked,” that is. where Iocal
supersonic zones embedded in the subsonic field extend ffom
the model to the tunnel walk, or, in the supersonic case,

-ivhereembedded subsonic zones extend to ‘the tunnel vn-dls,
or shock waves, reflected from the vds, impinge on the
modeI. Some progress has been made recentIy in modifying
wind-tunneI test sections so as to pinimize these effects,
but, on the whole, the majority of good test data in the
range very close to .11-=1 has so far come from free-flight
tests. Some good transonic data are available, however,
from transonic-bump tests made in wind tunneIs (reference
1). Using small models usually results in 10TVReynolds
numbers so that diflictdty is often experienced in ~~trapo-
Iating data to full+ize ReynoIds numbers; this seems to be
particuIarly true of the transonic speed range since the
effects of boundary-layer and shock-wave interactions seem
to be quite large there (references 2 and 3).

In this paper it is shown that in many instances tests need
not be made in the region very close to 31.=1 since the
flow in this range can be inferred from testing below and
above this range and using an interpolation based on the
fact that the Iocal Mach number at-any point on the surface
of unswept two-dimensional bodies and finite three-dimen-

—

sionaI bodies has a stationary vahe at M-= I.

EZISTKSCEOFPOTIZYTIM.TEAMiOhTC FLOWS

Guderley (reference 4) has made a detailed investigateion
of the possibility of smooth transonic flows (i. e., subsonic
flovis with an embedded superwnic zone in which no shock
-waves appear). He proposes that such smooth flows are
except ionaI, that they are discrete cases occurring for ordy
particular body shapes at particular free-stream Mach nmn-
hers. Any perturbation of the shape with the hfach number
heId constant (or vice wrsa), Guderley cIaims, would result
in a shock appearing in the flow. This bears an amdogy to
the well-known Busemann supersonic bipkme which theoret-
ically has HOshocks (and hence no drag) at a discrete value
of free-stream Mach number and angle of attack (reference
5, p. 154). GuderIey’s pmpostd is stiII controversitd (e. g.,
see the paper of Sears who has made a critiad survey of the
work to date on the existence of transonic potential flows
(reference 6)).

It is obvious that the potentiaI flow must break down for
a given body shape at some Mach number less than 1. The
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argument whether this breakdown occurs precisely when a
supersonic region lirst appears on the body or at a slightly
higher Mach number seems somcvvhat acadegig (although
very interesting), since it ia well-known experimentally that
the drag-rise Mach number (i. e., the Mach number where
noticeable shocks first appear) is very close to the critical
Mach number (i. e., the Mach number at w~ich sonic velocity
first appears on the body) for most bodies without surface
slope discontinuitiw.

Kuo (reference 7) proposes that supersonic compression
is unstable to dist.urlmncm; that is, a supersonic region on
a body in subsonic flo~r”must end in a shock “with no com-
pression occurring in the supersonic flow ahead of theahocfi.
There seems to be ample experimental evidence to show
Lhat this is nob strictly true since, for example, the com-
pressionregion of a k-shock is clearly supersonic, However,
the x-shock configuration is believed to be a phenomenon
associated with Iaminar-boundary-layer and shock-wave in-
teraction; with turbulent boundary layer (a coridition moro
closely approaching nonviscous flow) hardly any “noticeable
supersonic compression occurs before tic shock ending the
supersonic zone (see reference 8).

CHOICEOFMODELS

Twodimensiond flow is much simpler to handle than
axially symmetric flow both in theoretical work and in intcr-
ferometry. Hcwce it was decided to study two-dimenaion~
flows despite t-he weU-known difficulties in approximating
two-dimensional flow in a wind. tunnel.

Because of th considerations mentioned previously it
was decided to test very smaH modck which would be of
such a shape that viscous influenc=. would not mat.eri@y
affect the flow over them. This led to the ohoice of “half
airfoils”—wedges and circular-arc sections followed by
straight sections. These models have favorable pressure
gradients on their surfaces ovei most of the ,tra~onic
range so that boundary-layer separation, if it does occur,
will only occur bccausc of shock-wave influcnc~, Further-
more, such sepmation will occur dovtream of thtipart of
the body being studied and hence will not affect the me&urc-
ments. Certain viscous effects will still be evident, however,
for instance, the effective rounding off’ of the shoulders and
leading edges of the wedge models. s

Both theoretical advantages and practical need make the
study of thin sections d@rable. Consequently, the scmi-
wcdge angles chosen were 41°j 71°, and 10° (a 26.6° wedge
was also used in order to make a comparison with some avail-
aldc theoretical work on a wedge of this angIe). The circular-
u.rc section chosen was essentially the front half of an 8,8-
percent-thick biconvex circ.ula.r-arc.airfoiI, fo~owcd by a
straight section. ModeIs of sqctions.mycl~thinner than this,
with the same chord Iengths used, run” kto” structiimd
difficulties and also the ratia of boundary-layer thickness to
model thickness becomes large euough to cause considerable
deviation from nonviscous flow.

TBANSONIC-FLOW’THEORYANDEXPERIMENTS

The investigations of Von K&rmfin,Busemann, Guderley,
Franld, and many others have contributed significantly to
mcthoda of approach which can hc used to study transonic

flow (references9 to 14). The detailed numerical calculations
for sp”ecific cases made by Maccoll and Codd, Emmrmsl .
Drouggoj”Drebinger, Guderley and Yoshihma, and Vincent.i
and Wagoner (rcferencca 15 to 21) hvc holpcd to dispel the
idea of a “sonic barrier.” Recently Cole at GAUNT hs -..-.
given an analysis of thu flow past wedge sections at high-
subsonic speeda (reference 22). By combining the resuhs of
Guderley and Yoshiha.ra’s, Vicent i and Wagoner’s, mu-l
Cole’s calculations, the flow pasL thin wedge sections can
be given completely through the t.ransonicrango pmn-itting
a comparison with t.Impresent cwpcrimcnts. Some of lhO
investigations menticmed above will he discuescd in mmw
detail further on in the present paper.

Available experiments in the tranaonicrange on thin wccfge
scctious ire surprisingly few. Pack (refercncc 23) describes
some interferometric experiments on 10° and 20° semianglo
w-edgesmade at Braunschweig. His subsonic data appcm
to be good, but the flow in the supersonic intcrferogrwns
appears !.o be somewhat nonuniform and not very closely
ttio4imensional; onIy one supersonic Mach number was
tested where detached shoe@ occurred. llis conchsion tlmt
the p/p= distributions on the surface of the 20° semianglo -
wedge are very much h sat-m”foi .M. = 0.803 and M-=
1.40 is .i.nteresting,hut the statement thtit this agmcs with
the Lhcorckicalpredictions of hfaccoll n.mlCodd is incorrccL
since they indicated that the p/p. distributions would bo
nearIy LImsame.

Griffith at Princeton has just recently publishw] Lho
results of some very carefully done expmiments on flow past
wedge sections of semiangles of 7°, 10°, 20°, 30°, 45°, and
90° (and sevcra.1other shapes] with dctacbcd shock waves
(refercncc 24). These expmimcmts &we* dono in n shock
tube and intmfcrograms are prcsentwl of the flow fiehls.
The experiments clearly show that the shape of tbe dctachwl
shock and its detachment distance from t.hc sonic po”mt on
a wedge depend onIy on the body tl~icknessand t.hv11arh
number (not the wedge angle) when the Mach numlx!r is
well below the shock-attachment 310cI] numlxy. This is in
general agreement with Busemann’s considerations in his
p~per on detached shock waves”(refercmcc 10).

Licpmann, Ashkenas, and Cole (rcferencc 8) madv some
careful pressure measurements on the styfaccs of 6- and
12-percent-t.hick bieonvex circular-arc airfoils at zmo anglo
of attack at high-subsonic speeds in connm+iou with studiw
of s~ock-wave and boundary-layer interaction. Some of tho
results of their teste are combimxl here with corrcspcmding
Iow-supmsonic test resuIts from the premnt invmtigntion”to
indicate the bclmvior of the pressuredistribution on circulnr-
arc airfoils at zero angle of attack through the entire transonic
range.
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ing out the experimental work.
experiments have shady been

FLOW PAST TWO-DIMENSIONAL

Some of the restdta of these
reported in reference 2!5.

SYMBOLS

sound velocity
RirfoiIchord
prmaure-drag coetlkient . -

pressure coefficient

Chb3tone-I)ale constant m-
model span
~lach number
index of refraction
pressure
dynamic pressure
airfoiI thickness ratio
horizontal component perturbation velocity (per-

turbation from a*)
vertical component perturbation velocity
Cartaian coordinates, origin at Ieadw edge. of

pmtie
reduced vertical distaxice (J(7+ I)t/c]my)
angle of attack ‘
ratio of specific heats (1.4 for air]
Semiwedgeangle
wave length of monochromatic light used on inter-

ferometer

density
Subscripts and supmacripts:
(. ). conditions in free stream
( ), reservoir conditions
( ): reservoir conditions behind a shock wave
( )* conditions at sonic docity

Symbols used without subscripts indicate local conditions.

APPARATUS AND MBTHODS

WINDTUNNEL

The measurements were made in the G~LCIT 4- by
lo-inch transonic wind tunneI. For a d~-ption of the
tunneI and the flexibIe nozzle emp~oyed see refermce 26.
The tunnel can be run at both subsonic and Iow+upersonic
velocities with continuous hlach number nriation through
use of the flesibIe nozzle and a variable second-throat nozzle
downstream of the test section. -

alODR&

The models used were half airfoils followed by straight
sections. J?our of the models were midges (semiangles
4.53°,7.56°, 10.OOO,and 26.57°) follomd by straight sections
and the fifth was half of a bicmmex cimukam airfoil (8.80
percent thick) followed by a straight section (see & I}.
The distance from the leading edge to the point where the
straight section began was of the order or% inch for all five
mcdeIs. The modeIs were made of tooI steel and were very
carefully machined and lapped so as to gke esact. cylimirictd
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urfacm. Two pressure orifices on opposite sides of the air- ___
oil were phued exactly the same distance from the leading _.
dge to aid in setting the model to zero angIe of attack by
latancing these p~ur~ on an aIcohoI U-tube. Because
f tie very short chord lengths vernier-protractor meam .- -
rents of the opening angIes of the Ieading edge y-em of
oubtful accuracy, so the angles were measured by lett~”” -
be leading edge split a beam of pardkd Ii@ and measuring
he position of the reffected apots on’ b waU behind the
lodel. In this reamer the angles could be measured to
:0.03°.

-.._

NT138FEEOME?EB
The “hterfemmeter used ip this investigation is described ‘

~references 27 md 28. One of the main feat~ of ~-”””-
lterferometer is that both Iight beams are passed through
~e teat section, one over the model and the other ahead of, -- ~



72s REPORT 109+—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

t.ht’model in the uniform flow field, that is, where the velocity
is nearly the free-strearn wiocity. The advantages of this
are: (]) Tho fringe shifts are in relation to the free-stream
density and (2) the effects of the side-waII boundary layers

* are approximatc]y canceled out since both beams traverse
nearly the same boundary layer at.each side window. This
leads to improved accuracy when the int.erferograms are
evaluated on the basis of the absolute value of the fringe
d] ift from no-flow conditions. For these tests finite-fringe
interferograms were used and another method of evaluation
was dmised which is much simpler and more accurate than
t.llt’.abovO-mentionecl technique. Infinite-fringe intcrft’ro-
gra.ms, whilc they give the constautdensity contours irn-
mediatel.v, are Icss accurate than the superimposed finitc-
fril)ge interfcrogra.msbecause any optical inaccurtwies in the
system cause the contour fringes to. be distorted. These
inaccuracies me calibrated out in the superimposed finitc-
fringe int.erfcrograms. Also there me times srheu one dots
[ret.know whethw th(’ density increment betwcen contours
of tin infinit~fringe interferograrn is positive or negative;
this trouble does not arise with the finite-fringe intwfero-
.grams. A typical finite-fringe intcrfrrograrn is shown in
figure ~,

FII;W32—Typkal Mltc-frIngi MerferOgmn. S@m-cmt cimlar-cwc sectionat .+fm-LXO.

METHOD OF EVALUATION OF lNTEEFEIWGRAMS

‘1’hc method of evacuation used here depends on t~vo
techniques: (a) Photographic superposition of disturbed
auc[ undisturbed intcrferograms and (b) fringe identifhtt ion
~v u pressure measured on the mode].

DhQct photographer superposition of a “no-flow” finite-
fringe interferogram on a “with-flow” finiLc-fringe inlerfcro-
gram gives rise to dashed shadowy lines (the dashes being
where the dark fringes of onc pirture cross tlw light fringes

Fmvm 3.—Typ[cd suprr[mpw=?dEnlte-fringe Intcrfemum. KP .scminngkuwlpx al
3fm -127$.

of the other); see figure 3 for an cxamph’ of this type of

picture. ‘rh(q(i shadowy Iincs W] uusil.vIx’ shown to be lim’s
of constant density for two-dimcnsiomd flow nnd me the
same contours as would lx: obttiined 0[1 arl infinite-fring(’
intcrferograrn made -with pw’fwt opt id surfaces, ‘rf II!
incrrmcnt in density Lwtwcen thww shado~vy lim’s is n
constant dependent only ou the span of tbv model nm] Ihu
wnvc icngth of the monochromut ic Iight lJeing usc[l. This is
easily shown since the diflcrmcc in opt id p)l.11]Iengt1)s of
the light rays bctwtwu two adjacent umstan I-(hwsity con-
tours must be 1 wave lmgth of the ligllL I.wingused, For
two-dimensional flow the diflercncc in opt imd palh “Iungth
will simply be lAn, where 1is the span of the modeI and An is
the difference it] index of refraction bct,wccu [Iw two light
paths. Thus

iAn=h (1)

But [he relution Imt.wcrnindex of r(’fractio]l amI dw]si~J ill a ,
gas is given by

n-l=kp (2)

where k is the Gladstone-Dale conshmt (a function of (he
light frequency and typv of gnsj. Therefore
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(3)

@mre Ap is t~ d~fferencein density between two adjacent
constant-density contours. For these experiments
.

h=5461 A (mercury green Iine)
k= OJ162 CU ft@ug
1=3.50 in.

m
&#w=O.0250 per fringe shift

where A=O.00211 slug per cubic foot was th~ usual tunmd
stagnation density.

The advantage of photographic superposition is not only
in time saved but also in increased accuracy of evaluation.
Any alight changes in fringe spacing or fringe orientation
with respect to the no-tlow interferogram which occur before
the with-flow interferogram is taken can be ahnost esactly
oancekd out by causing the two superimposed interfero-
grams to coincide esactly in a region where it is known that
the flow was uniform, since in such regions there shonId be
no ieopycnic contours. This is particularly easy to do for
supemonic flow if a portion of the flowfield ahead of the nose
shock wave is included in the interferogram. For subsonic
flow care must be taken to include enough of the flow fieId
ahead of the modeI in the interferogram to have same of the
nearly undisturbed flow fieId for comparison; this was quite
simple to do for the small, thin models used in these tests

The actuaI superposition tetique used here was 6.rst to
make a print (3% times exdargedj of the yrith-flow interfero-
gram. This print was then pIaqxi under the enlarger and
the no-flow interferogram negat ive was put into the wdarger.
By changing the enlargement.scale and moving the with-flow
interferogram under the enIarger the fringes were made to
roi.ncide exactly in the regions of uniform flow. The con-
stantdensity contoum ccndd then be drawn in on the print.
AIteruativeIy, the first print could be made on transparent
paper @neco Reprolith Ortho was used) and when the super-
position was accomplished a piece of photosensitive paper
was slipped uuder the transparent print and a print of the
two interferograms was obtained. ThB ma the technique.
usedfor figure 3.

[q order to identify the density values with the fringes a
pressure tap was pIared on each model approximately half-
way from the Ieading edge to the shotdder (a region where
the pressure gradient was expected to be large). From the
pressure reading the density at the pressure tap was calcu-
lated using reservoir fluid properties (taking into account
eutropy changes through shock waves). The pressure tap
W-Walways lie between two fringe contoum or on a contour,
so that. by knowing the density increment between fringe
cent ours, the values of the density on the adjacent contoum
ran be obtained by interpolation. The whole interferogram
is determined once the density is known on one contour (e..-
rept for the shifts through shock waves). ●

IXTEEPEEO?+IBTEE SSMITIVITY

It is interesting to note that. the interferometric method
has ita greatest sensitivity in the transonic range. As
pointed out previously, the density increment between two
adjacent contour fringes is a constant

2724ss—aJ-47

Now in any part of the flow field where the stagnation
density is constant along a streamline,

..— —
.

so

(4) :

(5)

Hence the increment in Wwh number between adjacent
contour fringes is given appmfiteIy by

s-mce .

Ap ‘h
~klp.

4–
This funotion has a tihnum at ..[= -& which “is

llf=O.914 for air (7=1.4). ~ graph of this function is
shown in figure 4. ~rote that the lIach number increment
per fringe for these tests was ahva~ closely equaI to 0.05.
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SiIy, the expression for the increment in pressure
coe5cient between adjacent contour fringes is approxi-
mately

(1+’s d-’. .

For vahws of M cJoaa to 3J-, this expression

T 2“
at M. = — which is 1.&32 for air.

~—~

●

has a minimum

SIDEWALLSOUNDAEZ-LA~EKP’PEC?I’ONAPPSOXIMATIXG
TWO.DXMENSIONU~w

A close approximation to two-dimensional flow over the
&hole span of the modid was required s“mcethe interferometer
integrates the vaIue of the density from wall to walL In a
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nonviscous fluid letting the model extend from wall to waII
wouId theoretically give two-dimensionaI flowover the whole
span. If the modeI did not span tlw whole tunnel, the flow
would correspond to that pa& a model of infinite span with
periodic gaps in it where the gaps were equal to twice the
distance from the edge of the model to the wall, The effect
of the side-wall boundary layers, for a model that does not
span the tunnel, is roughly to decrease the size of this gap.
Approximately, the gap size would be decreased by twice
the displacement thickness of the wall boundary layer. By
making the gap between the edge of the model and the wall
approximately equal to the vmll-bounclary-layer displace-
ment thick.nces,one might hope to approximate closely two-
dimensional flow over the span. This phenomenon is, of
course, very much more complicated thtin this, particularly
in the supersonic case whe.rc the shock waves interact with
the wall boundary layer. However, by taking circular-
cylinder and wedge models and varying the gap size in in-
crements of )fhinch, it was found that the detached bow wave
became closely two-dimensional when the gap size was X inch
(i. e., therewas no blur ahead of or behind the shock pictures)
which is almost exactly the boundary-layer displacement
thickness when measured without a model in the tist section.
When the gap was XSinch the shock was blurred ahead of
the main shock and when the gap was %, inch it was blurred
behind the main shock. These tests were furthc.r sub-
stantiated by some.scMleren pictures, which Mr. Walter G.
Vincenti of the NACA Ames Aeronautical Laboratory
kindly made available, showing a view looking down on a
wedge model so that LheIe.adingedge of the detached shock
appeared as a liic; by varying the model span a discrete
value of the span was found where this line was ahnost exactly
parallel to the leading edge of the modeI, while for just
slight variations from this gap size the shock was curved
forward or backward. Figure 2 showa a finite-fringe iinter-
ferogram of the circular-arc section with a detached shock
whera the definition of the shock wave was unusually sharp.
This is strong, but, of course, not conclusive, evidence that.
Llwflow was cIosely two-dimensional over most of the span.
Further evidence that the flow differed from two-dimensional
flow only slightly is given in the next section.

SIDZ-WALL BOUNDARY-LAYER EFFECT “ON INTE BFEEOGEAM
EVALUATIONS

A result of the method of interferograrn evaluation de-
scribed abovo is that the effect of the side-wall boundary Iaycr
is approximately canceled OUL,since the over-all fringe shift
from no-flow conditions is unimportant, ordy the relative
fringe shifts from a point of known density being used. This
is strictly true only if tho integrated side+vd boundary-layer ~
density, defined by

J
;Pdy (8)

where ~ is the direction perpendicular to the tunnel wall and
y= O is the wall, is the same over the entire fieId of view of
the interferometer. ObviousIy, this can never be exactIy
true since the pressure field caused by the modeI, the
boundary-layer growth, and the shock-wave and bounda.ry-
laye.r interaction all tend to change this value. An indica-
tion that all these effects might be small was obtained. from

the modeI tests where pressures were mmsurrd at two
points on the model in tho cmtcr of thr sp~n, wlwre LIic
flow is closely t.wo-dimensiomd; tIIv dmsity inrrrmcnt bt’-
twcen tlwsc Lwo points on the model was comptirwl with
the densiLy increment given by the intcrfcrograrn, Thb
standard deviation from zero of (hc diflenmcc l.wtwccn these
two increments over the W11OIOrtmgc of test Mach numbers
was about 1 percent of the st.agnation density. Also, the
values of pressure-drag coefficient obtained intcrfmomct,-
ricaIIy for the atiac.11~’(i+l~ocl~-~vavccases chcckcd tho
oblique-shock theory wry closely, and it is well-linown that
the oblique-shock theory checks ti~pmimcnt quiLc WCII.

DETERMINATION OF FREE-STREA,M MACH NUMBER

An interesting result of the method of cvaluaLion just
described is that the free-stream Jfach number in subsonic
flow can bc determined from the interforogram and the
measured pressure on the model, provided a large enough
fieId of view ahead of t.humode] is obtained in the intcr-
ferogram. This can be done by noticing tbut a ccrtnin
number of compression contoum appear around the hwding
edge and then expansion contours folIow t.hcsc toward the
back part of the airfoil; the center fringe corresponding
ta free-stream dtmsity can then be traced out into the I!ow
field (see, e, g., figs. 9(a) to 9(d) of the ltl”wedge insubsonic
flow). The exact value of the density can ,hc dctcrmincrf on

this fringe as described previously and, hence, knowing
the stagnation density in the soling chamber, the eflectivo
free-stream Mach number can be determined from the
isent.ropic-ffow rclatiorm It is believed that this effective
Mach numl.wr is a good approximation to the free-flight
froc-stream “Mach number and wouId give the samo flow as
that measured in the wind tunnel for thu very small models
used in theso tests.

This method is more accurate aL high-subsonic speeds
than at low speeds since more contour lines are obtaimxl on
the airfoil at the higher speeds (SCCabove discussion). The
estimated accuracy in determining free-stream Mach uum-
ber in this way was +0.01 for the range of subsonic hlach
numbers tested.

The free-stream Mnc.h numbers for the supersonic tests
were obt aincd by calibrating the ficxilhnozzlc jack sctLings
agaihst Mach number with a static-pressure probe iri the
center “of the tunneI. The probe was traversed upstream
and downstream in the region where the models were to bc
tested and an average Mach number was obtaimxl thrrc.
The standard deviations from this average value were of thu -
order of *0.005 in klach number for tho range of supersonic
Mach numbers tested.

WIND-TUNNEL CHOKING

In all the subsonic teaLingthe cnd.mkled supc~sonic zone
was not allowed to to”uchthe upper or lower wa]h. h OIM

or two of tho low-supersonic tests there was a quml.ion
whethm the embedded subsonic zone touched the ceiling or
not. In case it did, it is well-known that in such cases the
detached shock changes its curvature ncnr the cciIing so as
to come in nearly normal to the wak Siucc tic nwdcLs
wem so very small (fit in. thick compmcd with the 10-in.
height of the tunnel), it is believed tht the cffCCLof this on
the pressure distribution was negli@lc.
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EEYNO~S NUMBER

The value of the Reynolds number for all of these tests
was approximately 60,000 based on the chord of the model.
The boundary layer on the models %as laminar and no
efiort was made to trip the boundary Iayer to make it
turbulent. The compression region in the shocks shown in
the high-subsonic-flow interferograms is believed to be
assciated with the laminar boundary layer, as mentioned-
previously.

THEORETTC.4L~OE~ ON TRANSONICFLOW
RELAXATION CN.CULATIONS

lxI 1946 Maccoll presented a paper at the Skth Interna-
tional Congrees for Applied Mechanics in which he described
a. relaxation calculation of the compr-ible flow past a 20°
semiangle wedge followed by a straight section at Mach
numbers of 0.7 and 1.5. The flow lieId in both cases con-
tained both subsonic and supersonic velocities. His main
assumptions were: (1) Sonic veldcity occurs at the shoulder
and (2) the streamlines of the flow are perpendicular to the
sonic line (i. e., the Iine where sonic velocity occurs in the
flow). The first assumption can be shown to be correct. (see
reference 22) so that, indeed, it is not an assumption. The
second assumption, as Maccoll reaIized, was onIy approxi-
mateely correct for .iMm= 1.5 and certairily quite incorrect
far away from the wedge at 31. =0.7 (since the assumption
leads to an infinite supersonic region above the wedge). k
effeet, his soIution at Zlf==0.7 was “choked” in the sense
that the back part of the body could have no influence on
the front part. IL is well-known that for bodies at high-
subson.ic speeds a finite, cIosed supersonic region occurs in
the flow, so that the sonic line makes ~ @es possibIe with
the streamlines, including OO. The method of solution used
was to assume positions of the shock wave tmd sonic line,
calculate the residues in the reIa..ation net using the isen-
tropic-fiow equations [an approximation since flow behind a
curved shock is not isentropic), and then readjust the shock-
wave and sonic-line location, calctdate again, and so forth,
iterating until the solution cIosely repeated itseIf. Mace.ol.l
found that the p/po’ dist~bution on the wedge surface at
.31. = 1.5 was nearly identicaI with the p/pe distribution at
:11== 0.7. This Ied him to propose that the pressure in the
tmnsonic region, on bodies with distinct corners, ~aried as
the stagnation pressure and he presented .a drag curve
through .Vf. = 1 for the 20° semiangIe wedge calculated on
this basis.

Dro~e in 1948, following Maccoll, calculated the flow
past a finite cone of 45° semiangle with detached shock,wave

—2.15, using the same assumptionsat AI== 1.80 and .Mm–
as MaccolI (reference 18). He alsa made experiments on
this cone and found the agreement wi& his theory rather
good. He made se~eraI tests at lower supcrscmic Mach
numbe~ ah and found that the p/pa’ distribution on the
cone surface did remain nearly constant. except as the Mach
number became close to the attachment Mach number.

Drebinger in 195o showed how to calculate, by relaxation
techniques, the flow past finite cones and wedges with de-
tached Aocks, eliminating the isentropic-flow assumption
and the assumption on the streandines being perpendicular
to the sonic lime (refwmce 19)i He calculated a specific

.—

exampI~a 26.6° semiangle wedge at M.= 1.440-and .
checked the cahmlated shock-wave shape and position exper-
imentaUy. His calculations showed that, even for the de-
tached+hock case, the streamlines diflered from being per-”-

..*--

pendicuhr to the smic lines by angks as Iarge as 30°. His “”
calculation FM checked in detaiI experimentally in these
tests and a.greemmt was found to be excdlent. ‘-‘“

. ....
TRA?JSONTC PEETUEBATIOX THZOEY

By assuming that the veIocity component parallel to the
.—

free-stieam direction difTersonly by a small quantity u from -
a*, the criticaI velocity, and keeping only the highest+rder
ttmus in the differential equation, the equations of two-
dimensionaI irrotat.ionalfluid motion are reduced to

(9)

It was from these equations that Yon K4rm6n and GuderIey
independently arrived at the transonic shnilarity Iaws
(references 9 and 4). For two-dimensional steady flow past
sections whose, shape functions are the same, these laws
imply that

(10)

where M is the local Mach number on the surface of the --
section. The shdarity in pressure and drag coefficients
is then

(11)

.
(7+1)’W,

{
aIm’–l

(t/c)~’ 1‘g [(7+ WW -

(7+ l)’WD=h ?&’-1
(t/c)~’ { [(7+ l)VW ~

(12)
.

These quanti~ies will be called reduced local Mach number,
reduced free+tream Mach number, reduced pressure coef-

—...4.

ficient, and reduced drag coefficient, respectively, using
. .

symbols & ~., CF, and CD.
By interchanging dependent and independent variables

in the perturbation equations, the problem becomes linear:

(13)

-ivhere ,

. .

7=(7+1) $

and, by elimhating z by differentiation, the Tricorni equa-
tion is obtained:

~?J ~Y o
.

ii #- ~q= (14)

The main difficulties v-it.h this hodograph (u, u) plane are:
(a) The mapping of physical boundaries into the hodogmph
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piano is, in general, not known untiI the solution to the
problem is known so that it is not known where to apply the
boundary conditions in the hodograph plane and (b) the
mapping is often muIt.ivalucd, complicating the solution.
Two interesting cases are known where these difficulties
are avoided. They are: (a) The free jet, studied by Tschap-
Iygin in 1905, and (b) the finite wedge, studied recently by
Guderley and Yoshihara, T7incentiand Wagoner, and Cole.
These latter studies came to the author’s attention after the
present experimental study of the finite wedge in transonic
flow had begun and served to make the study more interest-
ing since the data could then be compared with the theo-
retical results.

THEOBETICALSTUDIE9 OF TRAK90NIC FLOW PAST THIN WEDGE SECTIONS

GudcrIcy was the first to forrmdate tho problem of the
thin finit.ewedge in the hodograph; he and Yoshihara found
an approximate solution to the problem of the flow past a
thin double-wedge profile at zero angle of attack aL Mach
number 1 using the transonic perturbation equations
(reference 20)..

Vinccnti and
profile at zero
numbers where
Their solutions

Wagoner considered the thin doubIe-wedge
angle of attack fo,r Iow-supersonic Mach
the shock wave is detached (reference 21).
were effected by relaxation calculations in

Lhe hodograph plane. Here the bow ahork wave and the
sonic line arc fixed boundaries (their positions are not
known origina]]y in the physical pIane) and the boundary
condition on the shock is the slope of the streamlines (or
the lines V= Constant). This boundary conditioy was
firs~ shown by Busemann, who aptly called the configura-
tion a “hedge hog.”

ColtI (reference 22] has recentl.v given a simpIe approxi-
mate analytical solution to the flow past a thin s.ymmetricaI
wedge foliowed by a straight section at high-subsonic
speeds (.11. s 1). His soIution satisfies the Tricomi equa-
tion and the boundary conditions on the wedge and at infinity
but not the boundary conditions on the sonic line. Effec-
tively, his solution gives a finite vertical sonic Iine from the
shoulder which is aIso a limiting line. Cole has indicated
that this solution is the singular part of the solution in the
hodograph and as such is most likely the main part of the
solution. It is interesting to note tha~ the drag-curve slope
and curvature at M.= I obtained from Cole’s solution
agree exactly with the values obtained from the simple
physical considerations of the next section. Also, the pres-
sure distribution on the. wedge at M== 1 agrees within I
or 2 percent with that obtained by Guderley and Yo&iha.ra.

,Sinc,othe back half of a double-wedge profile has oily a
Very weak influence on the pressure distribution on the
front half for h4m> 1 (onIy through the “last Mach wave”
from the shoulder point to the sonic point on the detached
shock), it is reasonable to take the solution of the double
wedge at M.> 1 and use the front-haIf solutions in con-
nection with Cole’s results for M= S 1 for the wedge fol-
lowed by a straight section and thus have a solution for the
latter semi-infinite body completely through the transonic
range. By using linearized subsonic theory and the shock-

expansion supersonic theory, the zmo-angle-of-at tack flow
is obtained for alI possible values of ill=.

Tsien and Baron (reference 29) have shown that the
shock-expansion theory can be expressed in the transonic
similarity form for thin bodies in pure supersonic flow near
Jfm=l.

Von K6rm&n (reference 9) has indicated also how linww~
ized subsonic- and supmsonic-flow results may be writ tcn
in the transonic similarity form since, from the Ihwndt1-
Glauert similarity, in linearized subsonic theory,

and, iu linearized supersonic theory,

(15)

(16)

and from the expressions for reduecd pressure coeffkicnt
(T+l)’faand Mach number, multiplying both sid& by ~Prt

. . .
these equations may also be written us:

4
,.

(T+ww= [(7+ l)vcl”a . ... ,. . . . ‘“:““ - -“m
(t/c)’Ja I—.lfmz

1-A1m2~,a[’~+’):1’a:l ‘“a)

.,—

.f {:) ~G

-..,... .-
(7+ 1)’W7

‘d
[(7+1)W12’: - “. :.. . .. .. .. .. --–. .–

(t/c)’/a= flf~l––1

‘E’J7xm(’+lfl’33 ‘“;; -
but

fi,=(7+ U“ac, . . . ,.., .—.—-.—
(t/c)*/’

JI=’–l .“ . .,,. .–
‘m [(7+ l)t/c]’/a

~= [(7+ l)t/c]l/ay

so equations (15) and (16) may be written in trmwnic forl~t

(17)

The subsonic pressure-distribution am! drag-coeffwiw~t
curv~ have been caIculatcd here from Colo’s analytical
expressions and, combined with the results of Guderh’y and
Yoshihara, Vincenti and Wagoner, and ‘lkie~ and Baron,
Lhe curvu for reduced pressure and Aiarh number distribu-
tion and reduced drag coefbient z are given in flgurm 5 to S
for the finite wedge followed by a straight section.

1The reduwd drag ccwlichmtgiven In @u’c 8 Inthat for the hulfwedge md k t’qual to
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It can be shQwn that Cole’s solution for Iarge negative —
values of &. goes over exactly into the linearized subsonic
solution (see appendix .4). The reduced-presure-coefficient
curve for ~== –2.o2 in figure 7 is so nearly identical for both

. solutions that they ctmnot be told apart (except that Cole’s
solution goes to Cp= at rfc= 1.while the Linearizedsolution
goes to – co). This is to be expected since the trmsonic
perturbation equationa are not restricted to transo~~c_
flow but appIy equally well to completely subsonic and
ciompleteIy supersonic ffow.s The transonic equation can
be written in the form

#lVtfaWaY-ted out tu the author by Dr. Mtlton Van DYke of the N.4CA .im= .k-
naut!cd TAbomtuy.
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?)q
where P is the perturbation poteutiaI such that u= U+~)

u=@. Thus it is cIear that for completely subsonic or
h

completely supcraonic flows tho term on the right is negli-
gibly small but beeomes of paramount importance in t.ransonic
flow.

CHARACTERISTIC FEATURES OF TRANSONIC FLOW PAST
WEDGE AND CIRCULAR-ARC SECTIONS

CHABACTEBISTIC FREE-STREAM MACH NUMBERS

Critical Mach number.-–Tl~e Mach number at which
sonic velocity iirst appears on the wedge is Mm=0 (within
the inviscid theory) since subsonic flow cannot turn a sharp
corner, Beeause of the fact that the boundary layer rounds
off the corner, and perhaps dso because of the spatiaI
resolution limitations of the int.erferometric method, sonic
velocity was not found there experimentally until
approximately & = —0.80 for the wedges.

The critical Mach number for a htdf circuIar-arc airfoil
followed by a straight section can be obtained approximately
from linearized subsonic theory. This theory gives the
surface pressure distribution as

– 4(t/c)

cp=~m [’-o-:)’”d%l(20)
which yieIds

e
— 1.Q26(t/c),

P.n= J=s” (21)
.

at z/c= O.783 (see appendix B). This cquat:on can also be
written in transonic similarity form by multiplying both

‘y+ 1)”8 (as shown in the previous section):tides by (tlc)%la

‘p~’=–H2““’ ““ (22)

Now, within the transonic perturbation theory,

(23)

(24)

the criticaI reduced

,

For the thickness ratio t/c= 0.088 used in these tests, this
predicts a critical Mach number of 0,834 at z/c=’O.783.
Experimentally, the critical Ma& number was found to be
0.825 and occurred somewhere betwcon z/c=O.75 and 0.95
(the pressure distribution was vely fiat in this range). It is
interesting to note that the cxpcrimentaI Mmti was higher
for the wedges than for the circular-arc proflle of tlw same
thickness ratio. This was probably due to a combination
of three effects: 0) The boundary layer for the same

Reynolds numbers used here was fairIy thick in comparison
with the dimensions of the model and thus it “rounded off”
the shoulder more than would be tlw case at highm Reynolds
numbem. (2) The heighL of the supersonic zone, even for
an ideal nonviscous flow past thin wedges, appwus to be
quite small until the free-stmarn Mach numlwr is quite
close ta 1. This is appmen~ from Cole’s thwwy and also
from the argument in reference 25 that the height of shocks
in th~ supmsonic zone must be of the form

[(’+1):1’’:=+5”
(3) The spatial resolution of the iuterfcrometric method may
not have bctm sufflciont to deteck very small supcmonic
zones near the shotdder. There is SISOa large refraction
error “nekr the shoulder due to the high density gradients
wti~ tends to obscure details of the flow ticre,

Shock-attachment Mach number,—The shock-at tU(!hlllL’11L
Mach number depends only on the opening angle of the
pro~e at the leading edge and can be prcdichxl quito pre-
cisely by obliqu~hock theory. lf dis the scmiopcning angle,
then it can be shown that approximately, for thin profiles,

.

(25)
.

(see appendix C). If t/c is the thicknessratio of the circular-
arc section, 0s 2(t/c). Hence for the circular-arc profile

(26)

Mach number at whioh sonic veIocity appears behind an
oblique shock,—The Mach number at which sonic velocity
appears behind an oblique shock M.~ is just slightly higher
than Mm4 and again is a function ordy of Lheopening rmglc.
These values can aIso be found quite precisely from oblique-
shock theory and approximately in similarity form can lx
given as

Mm.’-I

f-=[(~+l)o]
~la=! 2Ifs —. (27)

for the wedge (see appendix C) and

,.$m8=2 ‘ (2@

for the circular-arc section.

CHARACTERISTIC VALUZS OF LOCAL MACH NUMBER

Mach number at leading edge,—-The Mach number aL thr
Ieading,edge is zero (a stagnation point) for all free-etream
Mach numbers less than the attachment Mach number.

Mach number at shoulder of wedge .--The Mach number
at the shoulder of the wedge just before the turn is always 1.
This is easily seen in the cam of flow with detached shock
since. the onIy characteristic distance of the hitc wedge is
the distance from the leading edge to the shouIdcr which
must determine the shock-dctachmcnb djstance, and, if the
sonic point occurred ahead of the shoulder, Lhc shoulder
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.wuklnot influence the shock positiom Subsonic flowcw.uiot
mm a sharp comer so the flow must therefore reach Wch
mmber 1 right at the comer. In the case of subsonic fre-
3treaIn flow the argument is not so simple (see referenee 22).

At the shoulder the flow around the corner is IocaUy a
centered %hdtl-hieyer fan starting from AM=l. The Mach
number just behind the comer is thus determined only. by
the wedge angle and is independent of the free-stream hlach
number. Behind tf@ point the flow fi recompress to &
free-stream ilach number through a shock or series of shocks,
for free~tream Ylach numbem 1sss than the attachment
hlach n-r. The qmession for Alach number JIPM
behind an expansion from .lf= 1 through an angle @is

‘=Jzm-’dz~’A’’=’-’-~’’,’L’’’,.’L’“(’g)

Expanding the rigbhand side in povrem of J.3fFM2-l
[aesumed.small), the ht. nonzero term yields

which is in transonic similarity form so

(30)

(31)

PEESSURE DI-UTION ON BODIES MOVING THROUGH
AN HW1.NITE FLUID AT SPEEDS NEAR MACH NUMBER 1

STATIONARY VALUE Oq LOCAL MA(M NUMBER AT mER-9ruBAM MACH
XUMBEE 1

During the course of these investigations it wsa found
that for the wedge and eircubm-arc sections the local 31ach
number distributions on these sections at very high subsonic
speeds (above ~m., but. below choking Mach number)
and at very low supersonic speeds (where the detached
shock wa~e was a chord length or so, ahead of the section)
were nearly identicd. In trying to understand why this
should be so, the following explanation was derived: (1) At
low-upersonic speeda the bow shock wave is detached a
great distance ahead of the profile and a subsonic flow region
is embedded in the fIow fleId between the shock and the
sonic Iim The part of the shock directly ahead of the
profile ig nearly normal over quite a distance (of comae, the
sIope of the shock asymptotically tends to the eIope of the
hIach wave of the frec+trewn flow at large distances latersi
to the flow direction). ~agamatsu (reference 30) has pre-
vioudy indioated this and points out that the flow past the
profde should be closely approximated by resuming the
profile is ti a high-peed subsonic flow where the velocity
distribution at infinity is slightly nonuniform, the minimum
veIocity being directly ahead of the profile and equaI to the
veloaty behind the normal shock and then increasing in
both lateral directions. (2) Xow the normal shock near
black number 1 is nearly symmetrical in the sense that the
Mach number behind the shock is just as much beIow 1 ss

.

. ..-” ----—

the Mach number ahead is above I. This follows from the
mmmel~hock relation:

.. —-.
-—

(?2) - -_”:

..—

where Ml is the Mach nuniber ahead of the shock and J{i ,, ‘ -
is the Mach number behind the shock; so near 311=1,

.—
... ..

l—Ma*=iM12-l (33)
.L--

or
-.-—

1—J12*JIL— 1 (34)
---- :---

Thmefore if 31== 1+e, where c is small, the flow past the
profile is nearIy the same as the flow past the profile at
M-= l–c since the 31ach number behind the central”part
of the detached shock wave is ahnost exactly 1—g. lt.”, ,“~
follows therefore that the Iocal Mach number distribution - ..
on the prdle” surface must hare a stationary value at
-M-=1 and fu~hermore vary ody dowdy in
hood of M- = 1. Nathwnaticaily this means

It should be noticed that this amiunent is

th~ neighbor-—. ____ :...
.-. —

(36)

based OIk two ‘:
assumptions:’ (1) The detached bow wave moves very far
ahead of the profile as the flight Mach number deoresses “ ‘—=
toward 1. (2) TIM radius of curvature of the detached bow
wave at points dired.ly ahead of the profile becomes ex-
tremeIy Iarge as the ffight Afach number decressea toward 1., ‘ ~–

Ihamin@ these assumptions, it vrmdd seam that the
same reasoning should apply to any finite .threednensional
body hi an in6nite fluid trading at speeds near bhoh
number 1, except that now two radii of curvature at points —
on the detacl@ bow wave shad of the body must be
assumed to become huge as the flight Mach nu&ber de- ““

- -.._

creases toward 1. The detached bow wave is so far away “–
ilom the body at speeds just slightIy above Mach.number 1 -
that die body appears as only a wry mail objept in relation
to the radii of curvature of the bow wave and,. b, it
would appear as though the shape and attitude of the body L
couM have no appreciable effect in &anging the argumaut
presented above.

-—

The reasoning shotid also apply to an infinite yawed “”
cyIinder (whose cnm se@ion may be Wlte or, if the angle
of attack is O, may extend infhiteIy far downstream) “pro-
tied that the Jkh number considered is the component
of the hfach number normal to the generators of the oylinder. -

These arguments are for steady-flight speeds. Large
accelerations through mnic flight speed couId conceivably - ‘--
modify the phenomenon. Thus it is WicuLt to judge
whether or not the ava!Iable flight-test data confirm the
concept since neady all such data come from mkile tests .-. _

~Itkhelk-?mdthubsearotultm?hdty~pthmrmtmcqmbIcaf dmm!kdm ““
lfcmeemmna ssmooth warhtk+iti~thro@ Mac4ntuuk L -.

.-
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that involved large accelerations (or dcceIcrations) through
sonic flight speeds. The tramonic-bump tests of Weaver
on sweptback wings (reference 1) would seem to support
these conclusions since they show drag-ccdllcient maximums
very near Mach number 1, a necessary consequence of the
concept for finite three-dimensional bodies and finite,
unswept, twodimensional bodies as wilI now be shown.

SLOPE OF-PRESSURE- AND DItAG-COZPFICIENT CURVES AT Mm -1

13quation (w) enables one to calculate the slope of the

prcssurc- an~ ckag-coefficient curves at llach number I

as follows:

for isentropic flow so

d c, 4 2c, \M. -l.—
dMm .W=.l=; + 1 7+1

using
dhf :0..—

(iiIf. Mm.l

(36)

(37)

(38)

Now for a two-dimensional body the prwsuredrag coefficient
(based on the chord) is given by the contour integral

(39)

where
t unit.vector in stream direction
h unit.vector normal to profile pointing outward
ds elemimt of length along profile contour
so if the angle of attack is constant. and il~a is changing

$But M d8=0 for a closed contour, so

(41)

For the frout part of a profile (defined as that pm-t ahead
of the maximum thickness) the usual definition of a drag
coefficient is

‘b

C.r=+

J

(?PWld8 (42)
a

J

“b
where means the counterclockwise line integral from the

point o; nmximum thickness on the upper surface to the
point of maximum thickness on t-helow-c.rsurface; thus

so

wlwro’
t m~~imum thickness of profile
a angle of attack of profile
Similarly the drag coefficient for the rear pm-t is

‘c.+ ppm. (44)

so

For the tests on wedge and circular-arc sections followed
by straight sections the concept of drag coefficient of tho
front part of the section will often be used.

For bodies of revolution (which inclurfe sphmcs, conc-
cylindersj etc.) the pressure-drag coefficient (Lmscdon mnxi-
mum cross-sectional area) at zero angle of attack is

cD=J:l.orjd(J (46)

where
R rnasimum radius of body
1 length of body .
z distance from nose along axis
Therefore

dCD =~.. -- -. -
(I M-Mm.~ - 7+1

as before in the twodimensional case. ~~owever, for front
and back drag coefficients

(47)

so

and similarly

and these differ from two-dimensional values obtained above
in equations (43) and (45) by not involving the finwmss
ratio of the body (this is of course due t.o t.hc diflmmt
reference areas for drag coefficients).

For the general finite three-dimensional body the pressure-
drag coefficient is given by
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(49)

where A is some reference area of the body and S is the
wwface of the body. It follows as it did previously that

dt7D 2.—
‘cD/Mm.l

dlf. ~~.l=—Y+l

SLOPE OF DRAG-COEPF3CIENT CUBVE AT Mm -1 IN TELNSON7C SIMILAE3TY
PARAMETERS FOE TWO-DTM&WIONAL” “LOWS

Within the transonic approximation

P,= –2(5–(=)
so

NOW

so

Shnilarly it is easy to show that

and

dt!.=..—
d~. &-0=-”2

(50)

(51)

(52)

(.53)

(54)

(55)

(56)

OTHER DATA SHOWING SLOW VARIAT30?J OF 3.OCAL MACH NUMBER NEAR
.\r=-l

As mentioned previously, Maccoll in 1946 had already
proposed the slow variation of local \lach number near
M-= 1 on “bodies having distinct. corners.” It appears
that this latter restriction is not neceesary. X[accoll’s pro-
posal was based on rather shm evidence and it is believed
that here, on the basis of the argyment presented concerning
the normal shock, the principle is explained more convinc-
ingly. Also the experimented evidence given” here and by
Drougge (reference 18}, Bleakney and GrWith (pa-sad
communication), Weaver (reference 1), and by some KACA
reports tends to bear out the conclusions of S1OWvariation of
loeaI Nfach number on bodies near .3f- = 1.

This fact is sometimes slightly obscured in the XACA
reports because pressure coefficient was plotted instead of
p/p, or Iocal Mach number. However, con&mt Mach
number lines vreti sometinw drawn in these plots and there
the evidence shows up strongly (see, e. g., reference 31, figs.
7 to 11, pp. 36 and 37). The relative constancy of local

Mach number distribution near ;Ma= 1 for airfoik at an
angIe of attack is also shown clearly in figures 8, 9, and 10
of reference 32.

ON C031PARINGTJ3EORY ANDEXPERI%IENT

In references 21 and 25 discussions were presented on the
philosophy of comparing experiments with approximate
theories, and these discussions fl not be repeated here,
except to mention that in some of the theoretical curies
presented here the vaIues have been shown with a certain -
spread which results from usimga pressure coefficient equal

to —2 ‘--:” or —2 ‘+ (the formm vaIue is the one that

fits into transonic similarity theory; the latter va.ke is the
one more commonly used in perturbation analysis).

In connection with the idea presented in reference 25 of . .
extrapolat”~ experimental data to zero tKlckness in order _
to compare with resuhs from transonk perturbation anal~es,
it is interesting to note that the characteristic Mach numbers
mentioned in the section “Characteristic Features of Tran-
sonic Flow past Wedge and Circular-Arc Sections” can be
presented in powers of the thicknessof the wedge (or equiv-
aItmtIy in powers of the wedge angle), the first term of
which gives the transonic similarity expression; two “of these
vaks are

-..

(){
=3U3

27 1+5(7%P*T’’’’3)}’’3)} ’58’

(See appendixes D and E.j In transonie pm%mbation
theory me terms in 6 on the right-hand side are neglected.
This can Iead to fairly large errors for even moderately
Iarge values of d since the approach to 13=0 is noniinear and

(59)

Judging from this one might expect that quantitative
agreement of transonic perturbation amdyses with experiment
would not be so good. Howe~er, in comparing two similar “-
shapes with only slightIy different thickness ratios by
transonic similarity considerations one wouId
good agreement.

EXPER131ENTALRESULTS

~W FIELD NEAR 1~ WBDGE

Figure 9 shows interfero&ma of the flow

apeet fairly

past the 10°
semiangIe wedge for 14 blach numbers from 0.700 to 0.892
and 1.207 to 1.465 (the interferograms for the 4%0 and
7X0 wedges were very similar and hence are not shown here).

——
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Notice that the lines of constant density in the subsonic-flow
interferogra.ms me rouf@y efipt ica] in shape as predicted
hy the theory (see a.ppendims A and B). A supersonic
flow region was firstdetected between .U-=0.700 and 0.794
(the sonic Iine is shown m a clashed line in the figures) and
a sho,ck emanating from the corner appears in the super-
sonic zone at iifm = 0.794. As the Mach number was
increased, this zone grew larger and a shock appeared at
the rear of it, whale the shock emanating from the corner
weakened and disappeared. This rearward shock was of
the typicaI x type aswciated with a Ia.minar boundary
la~er, and the interferograms cIearIy indicated the separation
of the boundary layer ahead of b shock. The simihmity
between the flow field at IM-=0.892 and at 31.=1.207
(figs. 9 (d) and 9 (e)) is striking; the base of the rearward
shock has moved quite far back on the wake of the blunt
trailing edge at .31. = 1.207 but in the vicinity of aqd ahead
of the sonic line the two fieIds are nearly identical except
for the detached shock wave which appears about 1% chord
lengths ahead of the wedge at :lf.= 1.207. As the Mach
number was increased above 1.207, the detached shock
moved in cIoser to the Ieading edge and finally “attached”
tit a Jlach number quite cIose to the theoretical attachment
llach number of .ll= =1 .418. K’otice that the process of
attachment is very continuous. The effect of the boumiary

layer is quite noticeable in the last few interferoqams:

This ran be rougldy accounted for by considering the

boundary layer to change the shape of the body by its
dispkwernent thickn- and then considering a nonviscous
flow past this revised shape. On the wedge the boundary
layer will not grow so rapidly as on a flat plate because of the
favorable pressure gradient and, in fact, the effect of the
strong expansion around the corner is known to cause an
almost complete collapse of the boundary layer there. &
the bow shock wave gets close to attachment, the velocities
in the subsonic region behind it are getting very close to—
sonic velocity and hence the flow in this region is very
sensitive to any slight curvature of the “revised shape”
of the wedge. This accounts for the shift of the base of the
sonic line forward to the Ieading edge as the shock ap-.
proach~ attachment. The nonviscous theory would in.
‘dcate that the sonic line would ahm&s begin qt the corner
and, at a Mach number just slightly above the shock-
attachment Mach number,. the whole subsonic region would
become sonic; then, with increasing Mach number, the flow
behind the shock wouId be completely supersonic. &
observed, the boundary-layer ellect is to make the wedge
have a curved surface and the sonic Iine actuaIIy mores
slowly from the corner to the nose. Even with an attached
shock -iia.veat ..1. = 1.465 the flow behind the shock is not.
quite uniform (as nonviscous theory would indicate it
shotid be) because of the effective mu-red surface caused
by the boundary layer.
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LOCAL MACH NUMBER DISTRIBUTIONS ON THREE THIN WEDO=

Figure 10 shows the variation of local Mach number
distribution on the smfacea of the 4)4°, 7%0,and 10° semiangle
wedg~ with free-stream Mach number. This should,,be
eompswed with figure 5 which shows the corresponding
thsoretiod curves in terms of the transonic similarity param-
eters. The general b~avior of the theoretical and ex-
perimental curves is quite definitely in good agreement.
Particularly noteworthy is tie slow variation of the local
Mach number distribution near freestream Mach number 1.

PItESSUEB-COEFnCJE~TDISTRIBUTIONSONTHREE THIN WEDGES

The SIOWvariation of the Mach number distribution in
tho range near AI.= 1 .is obeured when the resulte are
plotted in tcrrm of pressure coefficient, since the pressure
coefficient changes a great deal if local Mach number is con-
stant while the free+ tream Mach number changes. A better
parameter for presenting transonic pressure distributions
would be PIP* (pip,’ in cue of a detached shock). Typical
0, distributions arc shown in figure 11 for the 7%” wedge
(the results for the 10° and 4%” wedges were very similar
rmd hence they are not presented). The points shown were
where the isopycnics intersected the body m the interfero-,
grams,

I I

“’n=
2t--t-- -il=$=

(0)

0 .2 .4 .6 ,8 1.0
x/c

(a)I@ senhngh wedge.

IFIouusAO.-LaalMach ntuntw Rsehk r/c for fnmedng frewtretvn Msch number.
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Site for a wedge the drag coefficient is proportiomd to the
average C,, the drag rise is ev-identtin the subsonic distribu-
tions as the poiDtwhere CP=O move9 rearward with increasing
free-stream Mach number. Linearized subsonic theory
(which predicts C,=O) locates the (?,=0 point at x/c=50
percent. F@re 7 shows theoretical reduced CPdistributions
at various reduced free-stream Mach numbers. Again the
quaIitat.ive agreement of these curves with experiment is
evidemt.

SFiOCK-DETAC~SNT DISTA!!CE FOE TEIBEE THIN WEDGM

Figure 12 shows the ahockdetachrnent distance against
reduced free-stream Mach number for the three thin wedges
and includes the theoretical values from reference 21. Here
Vincenti and Wagoner’s values for ~. have been multiplied

~}v ‘L&w
“ ‘“Aj#-~

in order to make the transonic perturbation

value of detachment reduced Mach number agree with the
value from oblique+hock theory for the 7~0 wedge: 8 The
reason for this was discussed in the section “On Comparing
Theory and Experiment,” namely, the difficulty of comparing

Jb - ti Mach nmnber, h the 7W WE@ the shmk ~ mdti at~~t ~
MoA-1.s3 (fm A-l.FJs). Wme the LmmJm!epertlmbatka tbear’g pmdk!ta .M.A-125 (i. ,
- 1.19).
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w

f (h) Supemnfc.

Fimnu lL-ConcIaded.

transonic perturbation theory quantitatively with experi-
ment. Notice how rapidly the shock wave moves away
from the wedge M the Mach number is decreased toward 1.

DEAG-COEFFICIE?4T VABIATION RITE MACHNUMBER FOB THBEE TmN
WEDGES

It vi= shown in rehmmce 25 that the viscous dhcts on

the wedge tend to compmsate each other at the leading
edge and the shoulder so that the over-all presure drag ii-
neady the *me as if the flow were invisc.id. Thus it would
be expected that the pressuredrag coe5ciats obtained by
integrating the experimental prwmre distributions would
cheek the inviscid transonic perturbation theory. The
reduced drag coellicient used here was .

(60)

which is, in ea9ence, the reduced drag coafticient of the
upper (or Iower) hrdf wedge. This was done since the wedge
model was regarded as the front half of a double-wedge
protie and hence the value given here is the part of the re-
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duced drag coefficient contrilmt,ed by the front half of such
an airfoil (C~~ as in equation (42)), based on the chord of the
double-wedgo profdc, which would he,twice the chord of the

model used here. Of ~urse, this viewpoint is valid only for
supersonic free-stream hfach numbers.

Figure 13 shows the.reduced drag coefficients for the three
thin wedges ,plottcd against. reduced Mach number. It is

3.0

:i

2.0

G 1.5

1.0

.5

$0 -1.5 -LO -.5 0 .5 1,0 1.5 2.o 2,5 3.0
., [m

FIGURE18.—ExpcrImentnlreduceddragcoefac!entssslnstreducedMachnumbaronawcdgr.

seen that Lhe results give nearly a universal curve, which
they should if the transonic similarity law is true, but that
there are.systematic variations with wedge angle. This is

I to be expected bawd on the discussion of the sect.ion ‘IOn
Comparing Theory and Experiment,.” Thr vmticaI lines
through the experimental points indicate w.tirna,tedaccuracy .
of the data. This figure should be compared with figure 8,
the theoretical reduced-drag-coefficient. variation with rL~-
duced Mach number. IL is obvious that tho qualitative
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agreement of theory and. experiment is good. In figure 14
the theory and experiment are compared directly for the
three thin wedges. Here the theoretimI drag coefficients
are shown with a vertical spread, the upper -dues for
Jf. > I corresponding to the use of the pressure coe.tlicient

—2(U—UJ
(’,= and the lower values, to the use of the pres-

s*
—2 (’u—’u.)

sure coefficient CP= ~~ . The situation is vice

versa for M’-< 1. From thM figure it is evident that. the
transonic perturbation theory gives a good approzinmtion
to experiment.

FLOWF3ELDATJfm=lA4 FORTHE26SWEDGE

Figure 15 shorn the e.sperimental and theoretical constant-

velo~lty lines in the subsonic region
shock wa~e for a 26.570 semiangIe

behind the detached
wedge at .l~- = 1.44.

— Theoretical
(Drebinger)

— Expefmentd

—— .

FIGcmx M.<oastant Mach nurnk conmurn for && semlsngI? wedge at .M= -1.4411

The theoretical analysis was made from relaxation calcu-
lations by Drebinger (reference 19) who used the flow equa-
tions with entropy variation behind the shock taken into
account. The experimental constant-velocity Iines were
determined from the isopycnic lines of the interferogmm by
takhg into account the lateral stagnation-pressure gradient
behind the curved shock. The isopycnic lines near this

strong shock wave were probably slightIy in error because of
the “smearing out” of the pressure discontinuity across the
shock in the side-walI boundary layers. It is seen that. the
agreement between theory and experiment on detachment
distance and constant-veIocity contours near the wedge is
good.

. .

F~e 16 show-s the surface pressure distribution from
reference 17 and the present experiments. Again it is seen “”
that the agreement.is good.

1.1
I I [ I

‘01-H-F7

x/c

FLOW FIELD NWE TEE x3-PERCEXT OIRCULARAEC SECTIOS

F@re 17 shows interferograms of the flow past the
8.8-percent circular-qrc section for 14 Mach numbers from
0.718 to 0.936 and 1.11 to 1.500.

Supersonic velocity fit occurred at 31.=0.825 (see the
sectioti “Critical lfach number”) and in figures 17 (c) and
17 (d) a nearly symmetric supersonic zone is shown at
hf. =0.848. hTo shock waves were apparent in this zone,
although a sensitive scldieren apparatus might have shown”
some weak shocks there. At M.=0.890 the supersonic
zone has grown rapidly and now terminates in the k+hock
configurateion. Further increase of the Mach number to
Alm=0.935 (@a. 17 (e) and 17 (f)j shows the supersonic
zone increasing laterally and the terminating shock moving
rearward into the wake of the body. F- 17 (e) and
17 (f)ho show the density distribution at .lla = 1.11 (the
detached shock wa-ie was just out of the field of view of the
interferometer) and it is interesting to note the similar&
between the flow field at .11== 0.935 and M= =1.11. It
wouId appear as though the shock terminating the super-
sonic zone at .lfm=0.935 had moved rearward to form the
trailing-edge shock (which is actually in the wake here
because of the bhmt trailing edge) and the supersonic zone
had grown Iaterall’y untiI the sonic Iine joined with the
detached shock far away from the body at .M~= 1, thus ‘
causing an embedded subsonic zone in the supersonic fiow
with further increase in Mach number.
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With further increase of Mach nmpber

..

figures 17 (g) to 17 (n) show that the detached shock &airi
approached the leading edge and the embedded subsonic
zone decreased in size until finaLIy the shock “attached”
somewhere between :11-=1.400 and J1a = 1.450 (the theo-
retical value being .M.A= 1.423).

LOCAL MACH NUMBEB DISTRIBUTIONS ON 8.8-PERCENT CIRCULAE-AEC
SECTION

l?iiure 18 shows the 10C81XIach number distributions for
the 8.8-percent circular-arc section w obtained frcmi the
experiments at various free-tream Mach numbers. Again
it is apparent that the variation of local Mach number
distribution near M.= I is ~erF’ sIovr and, indeed,. the dis-
tribution for .M.= 1 could be interpolated from this figure
with good accuracy.

F~e 19 is a cross pIot of the data of figure 18 except

I’%’k I

PIGUEE19.–Vsrtatfcm ofreducwd Im?alMach nnmber d!strfbutfons with Edll@ld free-stream
Mach number. 8.&pemn.t drctdar.arc section.



750 REPORT 1094—NATIONAL ADV180RY COiiiMI~”E FOR AERONAiJTK8
.—.

that here the data are given in transonic similarity param-
eters. This figure shows contours of constant reduced
local Mach number on a plot of reduced free-stream Mach
number against chordwim position. The dashed Iinesrepre-
sent subsonic local Mach numbers; the solid lines, supersonic
local Mach numbers. Note again the slow variation of
Iocal hkh number distribution with free-stream Mach
number near sonic velocity.

PItES9UIU3-COEFFICIENT DISTRIBUTIONS ON $.8-PERCENT CIltCULAR.AEC
SECTION

Figure 20 shows the pressure-coefficient distributions on

the 8.8-percent circular-arc section for various free-stream

Mach numbers. !l’he points shown are wh~e the isopycnics

intersected the body in the interferogram. Again the

presentation in this manner obscures the interesting fact

observed in figure 18.

DRAG-COEFFICIENT VARIATION WITH MACH NUMBER FOE 84-PERCENT
CIIICULAR-AEC SECTION

Figure 21 shows the experimental ddtimination of the
drag coticient of tie front part of the 8.8-perce,nt circtdar-
arc section. This again is of the nature of a fore drag coef-
ficient and, as shown in equation (43), it should have a

0.93!3

.890

.848

.818

.718

(o)

.- -~:—

0 .2 .4 .6 .8 1.0
x/c

(a) Suhonfc.

FIGUFU21-Premure dhtributiona on au S4+4rcent drcular-arc section.
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]
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0 .2 .4 .6 .8 10
WC

(b) Supmcmic.

FIOCRE !ll-Concludd.

positive slope equtd to ~--$ &* Cnl~..l at fif. =l;this

is how the subsonic data have been joird with tht! super-
sonic data. The verticaI lines through t.ho experimental
points again indicate &irnat.ed accuracy of the datu. For
the.ctie of an attached shock the pressure dkt.ribution can
be crdculat+d using characteristics theory and’~the shock
polar; however, a close .approximaLion is obtained by con-
sidering -the flow behind the shock wave to bc RandtI-
Meyer flow. (This yields, approximately, paraboIic4aped
bow aryl trailing-edge shock waves; sec reference 33.) From
this pressure distribution the drag was caIcul~td and is
shown in figure 21. Taking into account the “refktcd”
chmact.erktics from the shock wave would givo more com-
pression ahd increase the drag co&cient so that it would
agree better with the experiment.slvalues at Mm= 1.45o and
1.500 shown in @ure 21.

hTotethat the trots were made at low enough supwsonic
speeds to get definitely LM1OWthe drag-coticient maximum
at M.s 1,20. ,
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OCAL MACK XUSBEE DL9TBIBUTIOX3 OX A lS-PEBCENT BICO~X
C!IBCULAR-ARC AIRFOIL

F~ure 22 shows local ~lach number distributions from

reference 8 for high-subsonic-speed flow over a 12-percent

biconvex circular-are airfoil (with turbulent. boundary

Iayer). The data for the 8.8-pereent circular-arc section at
two supersonic speeds have been scaled according to the
transonic similarity law to the 12-pereent case and are
shown for the front half of the 12-pqcent airfoil in figure 22.
The back half for these two cash has been faired in using a
Prandtl-31eyer expansion which should be appro.xirnately
correcb (a more accurate determination could have been
made using ch~cteristim theory and the she@ polar).
At Mm= 1.58, Me theory indicates that the shock is attached
with sonic speed just behind the shock on the leading edge,
so that.the distribution can be obtained by standard methods -
mentioned above; again the Prandtl-hleyer ~anaion app-
roximation was used for the distribution at. ~f- = 1.58 in
figure 22.

The behavior of the N1achnumber distributions is similar
to that.of the distributions shown previously, except in this
csse the movement of the shock terminating the local super-
sonic zone is shown. Apparently little change in locaI Mach
number distribution occurB between 31.=0.936 and
,lf~ =1 .29.

DRAG-COEFETCIE?4T VABIATTON WITE MACH NUMBER FOE A M-PERCENT

E, BICONVEX CIRCULAH-AHC AIRPOIL

The data of figure,22 were converted to pressureBwhich
were integrated to give the pressure-drag eoeflicient for the
various free-stream Mach numbers. The results are shown
in figure 23. In addition the drags of the front and back
halves are shown separately. The drag-coefficient variation
betsveen.iM-–– 0.96 and ill-=1.20 viasbased on constant Iocal
N1achnumber distribution at valuee interpolated between the

.-

.

.

*

.-.

—

A

/.
), .

1.8 */
.

/’ /.
,4?&=l.m.. /“ ./J ‘

1.6
.

I /

. .

/9’’2f%fE=/
.Jj+fr’”I 1’?$$$I

[4?

I [ I \

r
–[—Liepmonn, Ashkenos, and Cole i
—Siilority .axfen&m & present tests .
—— Pmnd[ -Meyer flow appox”mtia

.6
. .

.4 - -—

0 .2 .4 6 .8
tic

..

.,-..

FIGOZI ,Z?.-Iaed Mach nnmber against r/c for hmrenshg free-stxemn LWeh nmnbET. 1%
peremt bieon~excfr~ afrfoU.



752 REPORT 1094—NATIONAL ADV180RY COMMITTEE FOR AERONAU’NC8

.12

0 CO of whole airfoil
CD of mm half of airfolt

.10-
0

co Of front holf Of Okfd -

—:— Pmndtl - Meyer flaw
crppronimation

.08

CD ,06

.04 -—-— ._

.02
M<]—;

[ ,..

‘5 ,6 .7 .8
.

.9 1,0 1.1 1.2 L3 1.4 1.5 1.6 !.7 1.8

—

Free- streom Moth number, Afm

FIOWRXzS.-Drag mefrident a@nst Mach numhr for U@rwnt blconvex cImulnrwo abfoll, (From data of II& 2? on km$fsof comtmtMach nurxbr dbtrlbutlonfromMa -0.90toI.Xl,)

curves for Jlm =0.936 and M== 1.29. The data were faired
into the curves for attached shock wave calculated on the
Pra.ndtl-Meyer expansion basis. It is seen that the fore drag
coefficient has a maximum after M.= 1 whiIe the drag coeffi-
cient of the rear part has a maximum before ill.= 1. The
over-alI airfoil has a maximum drag coefficient just before
fi4~= 1 in order for the curve to have the sIightly negative
slope at M== 1 given by equation (41).

CONCLUSIONS

An experimental investigation of transonic flow past two-
dimensional wedge and circular-arc sections was made using
a hfach-Zehnder interferometer. The conclusions may be
stated m follows:

1. The transonic similarity theory of Von Kdrm6n and
GuderIey was checked and found to be in good. agre,cment
wi~h experiment for thin wedge profiles near a free-stream
hfach number of 1.

2. The results of Lhcorctical calculations, using transmit
perturbation theory, made by Guderley and Yoshihara,
Vincenti and Wagoner, and Cole for a wedge in transonic
flow were checked experimentally at high-subsonic and low-
supersonic spce.ds for three wedges of dMerent angles and
were found to be in good agreement with experiment.

3. The flow field and the surface pressure distrilmt.ionfor
a 26.6° semiangle wedge at a free-stream Mach number of
1.44 were obtained experimentally and were found LObe in
exceIIent agreement with the theoretical calculations of this
flow made by Drebimger.

4. The pressure distributions and drag coc~cients for an
8.8-percent circdar-arc section followed by a straight sectiou
and for a 12-percent biconvex circular-arc airfoil were pre-
sented completely through the transonic range, It was
shown that some dificulty arises in comparing twodimen-
sional transonic perturbation theory with experiment., sinco
this theory neglects thfcknesa-ratio terms of order (t/c)’/a
and higher; for even moderate thickness ratios this will
cause noticeaLJedeviations from more exact theory.

5. It was shown from some physicaI argumcnti that the
local Mach number distribution on bodies t.iaveIingthrough
an infinite fluid has a stationary value at free-stream Mach
number 1. This was verified experimentally for the cam of
two-dimensional flow. It was shown that this concept implies
a drag-gcwf?jcient maximum just below free-stream Mach
number 1 for all bodi~ in steady flight. This fact can bc
used to obtain the variation of Iocal Mach number diatritm-
tion on bodies completely through the transonic range of
velocities from wind-tunnel tests, provided smaIl modcki
are used so that tests can be carried well above criticaI Mach
number and to low enough supersonic Mach numbers so
that the bow shock wave is detached a chord hmgth or so.

CALIFORNIA INWIYTUTEOF TECHNOLOGY,

PASADENA, CALIF.,June 1, 1951.



APPENDIX A

ASYMPTOTIC REPRESENTATION OF COLE% SOLUTION FOR LARGE NEGATIVE VALUES OF REDUCED FREE-STREAM
MACH NUMBER

Coie’s solution for the high+ubsonic-velocity flow past a
thin wedge (relerence 22) is given as follows (in Cole’s
notation):

where the center line of the wedge is at y= O; the leading
edge, at r= O; the shoulder, at z= 1; and

tind the other notation is the same as that in the present
paper.

Uiing the standard methods of partial-fraction expansion,

(64)

(55)

Substituting these into the integrals above and making use
of the inte~als

(–a’Kl,,(ct7)I.-,,a(c’t?);‘Y>fl>o
ad

equations (61) and (62) can be written as

.

(66)

(67) 6

(681

Jlaking use of ~he asymptotic formulas

T

(69) 7

(73)

I,(z)=~&es+ . . . as.?+~ , (70)
I one can write”equations (68) and (69) for Iarge vah~ of 2

rK.(Z)=1;e-’+ . . . as z+- (71)
--

and the simple summations

(74)

~EquaHon (67)la fmm reference 34;equation (Cd)la obtabwf by Wferentktim of equation (6i) with respect to ‘r.
~ FIgnres 5,6, and 7 W’FIEcalcnfated fmm thfs equatfon fm c-O, fm the cases %fi.

753
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Eliminate v between equations (74) and (75) for z,>z4 ~

(76)

and for Z>zla Q simply replace x by z— I and Z—ZI by
21—z in equation (76). Thus the lines of constant Mach
number are eIIipsestith centers on y==o, with ratio of semi-
axes euual to .

(3ZI/2)’1’=~~.
.. ...- . . .. . .. . . .

(77)

which is precisely the solution given by the Linearized
subsonic theory (sm appendix B).

Now, in the notation of Lhepresent paper,

u?!
.v. +(- 0“’-(– Eco)w

and since & & is small on the wedge and since

so, approximately,

7(Z —Z& T “c’~= “ ,,;1+0 ;7;) “’
VIJ –~(–tm)’’’?p=~ @

Similarly, for large values of z and 21it foIImvsthat

~ 1/6

()
= 1; z, Z1+CO for 2–2, smalI (79) .

z

Substituting equations (78) and (79) into equation (16), one
gets the exact linearized subsonic solution for constant-
velocity lines (SCCappendix B). ‘1’hcrcforc on tho wedge
(Y=O), from equations (76), (78), and (79), one has appmxi-
maLely for large values of 2 and zl

or

Cp=d=dog’‘:l (80)

which is precisely the linearized subsonic solution for flow
past a wedge (see appendix B). Thus Cole’s solution far
away from 31== 1 tends exactly to the limmrizcd subsonic
scdution,

APPENDIX B

LINEARIZED SUBSONIC AND SUPERSONIC FLOW PAST WEDGE AND CIRCULAR-ARC SECTIONS
.

LINEARIZED SUBSONIC FT.OW PAST A WBDOE

T,et tho wedge center line bo on y= O, with the Icading
edge at z= O and the shoulder at z= c. Then the incom-
preesible-flovrproblom is to find an analytic function u—iu
such that v= O on y= O except. for O<z<c where o= ~tl
and u–iv= O at infin$y. Such a function is

.-iv=~log, - — (81)

whew z= z+i~ and U is the free-stream velocity. Thus on
y=o,

(82)

Using the PrandLG1auert transformation, for linearized
subsonic flow

ZIG

“‘&=s10g61 –(44
(83)

(84)

For the incomprmsible case the lines of constant pressure
in tho fluid will be where

+(z :):1
=Constant

but these are circles with centers a~ ‘
.

-WC,
e~

z = ~. ~=o (85)
I_e #

and radii +
—wc, .-

eT7- ..—
ca

l–e ~

In the PrandtI-G1auert transformation the y distance is
or in transonic sindarity notat ion I stretched by the factor ~W as is the pressure c.oti-



TRANSOS’IC FLOW PAST T%HMMENSIONAL WEDGE &ND C~CU-=C S.ECI?IONS 755

cient so the lines of constant pressure (and hence density)
are ellipses with ratio of twinsequal to ~~i given by
the equation

LINEAmZED SUPERSONIC FIXl W PAST A WEDGE

From the Aclreret theory the pressme coefficient k supers-

onic flow is proportional to the slope and for the wedge

yields simply

c,= 2* (87)
@=~ — 1

or

, (88)

LWEAEIZED SUESONTC F!#3W PAST A CIECELAE-A2W SECTIOX

For the circular-arc section, the slope of the surface
varies almost linearly with distance from the zero-slop:
point aIong the axis of the prcdile. For the section -shown
in figure 1 then, with the center Ike on y=O, the leading
edge at z=O, and the zero+lope point at Z=C, the i.neom-
pressible-flow problem is again to find an analytic function
u— h such that on y=O, 0=0 except for O<Z<C where

()*=@I_: where t is the half thickness at X=C and
c

u—io=O at in6nity. Such a function is

g/-J ~

K ):—1 log.
z/c

u-iv= -~;
(z/c)–l ‘1 1 {89)

-

on the wedge (y=O, O<z<c), then

so the Linearizedsubsonia solution is . .. .-

4f——.

K )e,=– “_c ‘1–: log. ~::,c) il] (91)
~1”1— M-2

or

F,=Q-
[( )

1—~ log,
Zfc

.1-
+1

1–(x/c) 1
(92)

c

The minimum C, is obtained by differentiation, and one
his that

d(?,
d(lyc)=o ‘

x/c
at the point where Io% =~ and numerically the ‘

1–(z/c) x/c
soht ion of this transcendental equation is

XfC= 0.783 (!43)
which gkes

c
–1.626(t/c)

Pm{~=
—M .’

.(94)
~[1

LINEAEIZZD SIWEESONICPLOW PAST A CIRCULAR-ARC SECTLON

‘l%e result here is again simple from the ~ckeret theory:

or

APPENDIX C

!IRAPISONICSIIOCK POLAR

The equation of the shock polar in the hodograph p~aneis

where U is the velocity ahead of the shock and ii and F are
velocity components bebind the shock pa.ral[el and perpen-
dicular to the direction of .!7, respectively. llaking the
transonic approximation in this equation, let

Substituting into equation (97), neglecting higher pcnwrs of
the perturbation ~elociti=, one obtains

(95)

(96)

Letting

U’=(’y-+1) ; (
~

(loo)
C’=(7+ 1);

one. then has
2(&)~=(u=’—u’)2(u’+win’) (101)

The wedge angIe for detachment of the &o& WW now
be given by the maximum v~ue of o’. This k easily seen

within the transonic approximation

v’=(~+l]e
on the wedge and

Umr= 31.*— 1 (102)
this implies that

.

(7+ 1)6==+ (.11.’–1)’/2 (103)

or, viewed in another fight, this implies that the reduced

,
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attachment Jkiach number ~

M. AZ- 1 3
$mA=[~@j 421a-’1.19

I this can be written

(104) ,
(’Y+1)68=“$(fife’– v’ , (105)

I and, viewed in another liizht, this implies that the reduced
SimiIarly, the wedge angle for obtaining exactly sonic ve- Mach number for which ‘WAC veloci~y is obt aincd Mind,
locity behind the shock is given by the value of V’ where the shock on a wedge is

u’= O. This is v’=+ (Urn’)’”. Again using cqutition (102), I
I

(106)

APPENDIX D

VARIATION OF REDUCED MACH NUMBER AT WHICH SONIC VELOCITY OCCURS BEHIND AN OBLIQUE SHOCK WITH
FLOJv-DEFLECTIONANGLE

The obIique-shock relations can be written
I

where

MI hhch number ahead of shock
lfz hfach number behind shock
p shock-wave angle
6 flow deflection angle
For MZ=I, eliminating P between these two equations yields

. .

4
-Y+ 1 Ml)

j(ili,)
M,2–l–—

tan d=———-
q j(

~M,’–.f(MJ
(109)

1+~+1 M*)
-#

where

d

r
“M,~– 1 ‘ ‘

j(M1)=*-l + 1+7fi(M?– 1)+(--2—)

Expi@ing the right-hand side in powers of M,z- 1 (assumed
small), one obtains

[
(~+ I) “tan t9=(J4’~JJ)’” 1–- (M12- 1)+. ..] (11 O)

Reverting this series and letting 9= tan @ and 11,==~11~~,
one !ln&”

F’or ~=1 .4,
l+lo-y

(–)

*,8- 1.17fi
12 ‘y+l

.2

,
VARIATION OF REDUCED

The exact relation here is

APPENDIX E

MACH NUMBER BEHIND A PRANDTL-MEYER EXPANSION FROM
ANGLE f?,

I

Ffipanding the right-hand side in terms of -=1, us~

tan-l x=x_?+g_~
357+””

one obtains

(7+1) O=; (MPM’- 1)8’2 if l)na”’@&J– 1)’ ““ (113)

T
where

“.=9[’-(:+;;

WITH 0

Reverting this series, the filst few

M= 1 THROUGH AN

terms are

(114)
Therefore,

I

1PM=

Mp~2– 1 —
[(7+ l)e]’” “’

() {

3 m
=—

2 l+a[ 21 }3(7+1)2’8@/S+~(84/~(1I5)

For 7=1.4,

5(L[wT’’=’0’7
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